INTENDED USE

The Diagnostic Hybrids, Inc. D³ IFA Enterovirus Identification Kit is intended for use in the qualitative identification of enteroviruses in cell cultures by immunofluorescence.

SUMMARY AND EXPLANATION OF THE TEST

Enteroviruses (genus Enterovirus, family Picornaviridae) are among the most common viruses infecting humans worldwide. Enteroviruses are small (approximately 30 nm), non-enveloped, single-stranded RNA viruses with an icosahedral capsid composed of 60 subunits consisting of four structural proteins (VP1 to VP4). Enteroviruses are associated with diverse clinical syndromes ranging from minor febrile illness to severe, potentially fatal conditions (e.g., aseptic meningitis, encephalitis, paralysis, myocarditis, and neonatal enteroviral sepsis) and could be linked with the development of some chronic diseases (e.g., type 1 diabetes and dilated cardiomyopathy).¹² Each year, an estimated 10 to 15 million symptomatic enterovirus infections occur in the United States.³

Human enteroviruses have traditionally been classified into echoviruses, coxsackieviruses group A and B, and polioviruses. This traditional taxonomy was based on the associated disease in humans and animal model systems, sometimes resulting in overlaps between groups and difficulties with classification. As a result, beginning in the 1960s, newly discovered enteroviruses received a numeric designation (e.g., enterovirus 71) instead of being assigned to one of the traditional groups.¹⁴

Current taxonomy⁴ takes into account molecular and biologic characteristics and divides human enteroviruses into four species (human enterovirus [HEV] A, B, C, and D) but keeps traditional names for individual serotypes. Because molecular techniques of enterovirus typing are becoming increasingly available, new enteroviruses continue to be identified, and enteroviruses 79 thru 101 have been recently described (CDC, unpublished data, 2005).

Echoviruses 22 and 23 have been reclassified as a new genus (Parechovirus) in Picornaviridae and are termed human parechoviruses 1 and 2, respectively.⁴⁵ Although they belong to genetically and biologically distinct genera, human parechoviruses and human enteroviruses share many epidemiologic and clinical characteristics.⁴
PRINCIPLE OF THE PROCEDURE

The D3 IFA Enterovirus Identification Kit uses a blend of enterovirus VP1 antigen-specific murine monoclonal antibodies (MAbs) that when combined with a fluorescein isothiocyanate labeled anti-mouse antibody allow rapid identification of enteroviral antigens in cell culture.

The cells to be tested, on a slide prepared from a conventional tube cell culture or a shell-vial monolayer, are fixed in acetone. The Enterovirus MAb Reagent is added to the cells. After incubating for 30 minutes at 35°C to 37°C, the stained cells are washed with the diluted Phosphate Buffered Saline (1X PBS). Anti-mouse Conjugate, which is labeled with fluorescein isothiocyanate (FITC), is added to the cells. After incubating for 30 minutes at 35°C to 37°C, the stained cells are washed again with fresh 1X PBS. To prepare the slide for examination, a drop of the supplied Mounting Fluid is added to the stained cells and a coverslip is placed on the slide. To prepare the centrifuge enhanced cell cultures for examination, a drop of Mounting Fluid is placed on a clean microscope slide. The coverslip is removed from the shell-vial and placed on a drop of Mounting Fluid. For multi-well plates the Mounting Fluid is added to each well to cover the monolayers. The slides or wells are examined using a fluorescent microscope equipped with the correct filter combination for FITC at a magnification of 200 to 400X. Virus infected cells will be stained with bright apple-green fluorescence while non-infected cells will contain no apple-green fluorescence but will fluoresce a dull red from the Evans Blue counter-stain.6

REAGENTS AND MATERIALS PROVIDED

The D3 IFA Enterovirus Identification Kit contains the following:

- **Enterovirus MAb Reagent** 5 mL
 One dropper bottle containing a blend of murine monoclonal antibodies directed against enteroviral antigens. The buffered, stabilized, aqueous solution contains 0.1% sodium azide as preservative.

- **Anti-mouse Conjugate** 5 mL
 One dropper bottle containing FITC labeled anti-mouse antibodies. The buffered, stabilized, aqueous solution contains Evans Blue as a counter-stain and 0.1% sodium azide as preservative.

- **Enterovirus Antigen Control Slides** 5 slides
 Five (5) individually packaged control slides containing wells with cell culture derived positive and negative control cells. Each positive well is identified as to the infected virus present, i.e., Echovirus, Coxsackie A, etc. The negative well contains non-infected cells. Each slide is intended to be stained only one time.

- **40X PBS Concentrate** 25 mL
 One bottle of 40X PBS concentrate consisting of 4% sodium azide (0.1% sodium azide after dilution to 1X using de-mineralized water).

- **Mounting Fluid** 7 mL
 One dropper bottle of an aqueous, buffered, stabilized solution of glycerol and 0.1% sodium azide.

MATERIALS REQUIRED BUT NOT PROVIDED

- Fluorescence microscope with the correct filter combination for FITC (excitation peak = 490 nm, emission peak = 520 nm); magnification 200X to 400X.
- Cell culture for enterovirus isolation. Suggested cell lines14 include BGMK, A549, human diploid fibroblast, RD cells, Super E-Mix™ MixedCells™, and primary Rhesus monkey kidney cells (all are available from Quidel).
- Live control viruses for positive culture controls: Known strains of enterovirus for use in monitoring the cell culture and staining procedures. Such control virus strains can be obtained from Quidel.
Coverslips (22 x 50 mm) for Antigen Control Slides and for specimen slides.
Universal Transport Medium (available from Quidel).
E-Mix Refeed Medium or other standard refeed medium (available from Quidel).
Reagent-grade acetone (> 99% pure) chilled at 2°C to 8°C for fixation of prepared specimen slides, shell-vials and cultured cell preparations.

NOTES:
- Keep the reagent-grade acetone container tightly sealed to avoid hygroscopic absorption of water, which may cause a hazy, non-specific, background fluorescence.
- A mixture of 80% acetone/20% de-mineralized water is used for fixing cells in plastic multi-well plates. Store at ambient temperature (20°C to 25°C).

Sterile graduated pipettes: 10 mL, 5 mL, and 1 mL.
Sterile Pasteur pipettes or other transfer pipettes.

Caution: One should not use solvents such as acetone with polyethylene transfer pipettes.

- Fine-tipped forceps.
- Wash bottle, 200 mL.
- Sterile 0.45 µm syringe filter.
- Sterile 3 mL syringe.
- Bent-tip teasing needle (for removal of coverslip from a shell-vial); fashion the teasing needle by bending the tip of a syringe needle or similar object (e.g., mycology teasing needle) against a benchtop or with a pair of forceps taking care to avoid injury.
- Sodium hypochlorite solution (1:10 final dilution of household bleach).
- Humidified chamber (e.g., covered Petri dish with a damp paper towel placed in the bottom).
- Glass microscope slides.
- Acetone-cleaned multi-well glass microscope slides.
- Blotters for multi-well glass microscope slides: Two-well absorbent blotters, used to blot excess liquid from the mask to prevent spread of liquid or stained cells from one well to the other.
- Sterile nylon flocked swabs or polyester swabs, which are non-inhibitory to viruses and cell culture.
- Incubator, 35°C to 37°C (5% CO₂ or non-CO₂, depending on the cell culture format used).
- Centrifuge with free-swinging bucket rotor.
- De-mineralized water for dilution of 40X PBS Concentrate and for dilution of the reagent-grade acetone for use in polystyrene multi-well plates.
- Aspirator Set-up: Vacuum aspirator with disinfectant trap containing sufficient household bleach (5%) that the concentration is not decreased by more than 10-fold as it is diluted with discarded fluids.
- Wash Container: Beaker, wash bottle or Coplin jar for washing slides.
- Fixing Container: Coplin jar, slide dish or polyethylene holder for slides for use in fixing the cells on the slides.
- Inverted Light Microscope: Used for examining the monolayers prior to inoculation and examination for toxicity, confluency and for cytopathic effects (CPE). It should have between 40X to 100X magnification capability.

WARNINGS AND PRECAUTIONS
- **For in vitro** diagnostic use.
- No known test method can offer complete assurance that infectious agents are absent; therefore, all human blood derivatives, reagents and human specimens should be handled as if capable of transmitting infectious disease. It is recommended that reagents and human specimens are handled in accordance with the OSHA Standard on Bloodborne Pathogens.
 - Cell culture isolation may have some potential to be hazardous. Personnel working with cell cultures must be properly trained in safe handling techniques and have experience with cell culture before attempting this procedure.
All procedures must be conducted in accordance with the CDC 5th Edition Biosafety in Microbiological and Biomedical Laboratories, 2007, and CLSI Approved Guideline M29-A, Protection of Laboratory Workers from Instrument Biohazards and Infectious Disease Transmitted by Blood, Body Fluids, and Tissue.

- All specimens and materials used to process them should be considered potentially infectious and handled in a manner which prevents infection of laboratory personnel.
 - Biosafety Level 2 or other appropriate biosafety practices should be used when handling these materials.
 - Decontamination of specimens and cultures is most effectively accomplished using a solution of sodium hypochlorite (1:10 final dilution of household bleach).
 - Although Antigen Control Slides have been shown to be non-infectious, the same precautions taken in handling and disposing of other infectious materials should be employed in their use.

- Acetone, a reagent that is required for the test but not provided in the kit, is a flammable, volatile organic solvent. Use it in a well-ventilated area and keep away from flames and other sources of ignition.

- Never pipette reagents or clinical samples by mouth; avoid all contact of clinical samples with broken skin.

- Evans Blue counter-stain is a potential carcinogen. If skin contact occurs, flush with water immediately.

- The Enterovirus MAb Reagent and Anti-mouse Conjugate are supplied at working strength. Any dilution of these reagents will decrease sensitivity.

- Reagents should be used prior to their expiration date.

- Each Enterovirus Antigen Control Slide should be used only once. Do not re-use a Control Slide.

- Microbial contamination of reagents may cause a decrease in sensitivity.

- Store 1X PBS in a clean container to prevent contamination.

- Never pipette reagents or clinical samples by mouth; avoid all contact of clinical samples with broken skin.

- Avoid splashing and the generation of aerosols with clinical samples.

- Use aseptic technique and sterile equipment and materials for all cell culture procedures.

- Reusable glassware must be washed and thoroughly rinsed free of all detergents.

- Do not expose the Enterovirus MAb Reagent and Anti-mouse Conjugate to bright light during staining or storage.

- Sodium azide is included in the 40X PBS Concentrate at a concentration of 4% (w/v), and in the other solutions in this kit at 0.1% concentration.
 - Sodium azide is considered poisonous. If the 40X PBS Concentrate is swallowed, seek medical advice immediately.
 - Aqueous solutions of sodium azide, when mixed with acids, may liberate toxic gas.
 - Avoid disposal of these solutions down sanitary or industrial plumbing systems. Sodium azide may react with lead and copper plumbing to form highly explosive metal azides.
 - Avoid release to the environment.

- Use of other reagents than those specified with the components of this kit may lead to erroneous results.

- Testing should be performed in an area with adequate ventilation.

- Dispose of containers and unused contents in accordance with Federal, State and Local regulatory requirements.

- Wear suitable protective clothing, gloves, and eye/face protection when handling the contents of this kit.

- Wash hands thoroughly after handling.

- For additional information on hazard symbols, safety, handling and disposal of the components within this kit, please refer to the Safety Data Sheet (SDS) located at quidel.com.

Preparation of 1X PBS Solution

After storage at 2°C to 8°C, some salts in the 40X PBS Concentrate may have crystallized. Warm the solution to ambient temperature (20°C to 25°C) to re-dissolve the crystals, then mix. Add contents of the fully dissolved...
25 mL 40X PBS Concentrate to 975 mL of de-mineralized water. Label the 1X PBS with a 60-day expiration date after reconstitution, and store at ambient temperature.

Storage

<table>
<thead>
<tr>
<th>Table 1. Reagent Storage Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterovirus MAb Reagent</td>
</tr>
<tr>
<td>Anti-mouse Conjugate</td>
</tr>
<tr>
<td>Mounting Fluid</td>
</tr>
<tr>
<td>Enterovirus Antigen Control Slides</td>
</tr>
<tr>
<td>40X PBS Concentrate</td>
</tr>
<tr>
<td>NOTE: The Concentrate may crystallize when stored at 2°C to 8°C. The crystals will dissolve when the Concentrate is warmed to room temperature.</td>
</tr>
<tr>
<td>1X PBS</td>
</tr>
</tbody>
</table>

Stability

Reagents and components will retain their full potency through the expiration date shown on the label of each bottle when stored at recommended temperatures. Light exposure of the Enterovirus MAb Reagent and Anti-mouse Conjugate should be kept to a minimum.

Discard 1X PBS if it becomes cloudy.

SPECIMEN COLLECTION AND PREPARATION

Proper collection and handling of the patient specimen are the most important factors in successful enterovirus detection. Specimen collection, specimen processing, and cell culture of viruses should be attempted only by personnel that have been trained in such procedures. Care should be taken during all specimen collection and handling to avoid generation of aerosols.

For specimen collection and processing recommendations, refer to CLSI Approved Viral Culture Guidelines.10

Specimen Collection11,12

Specimens accepted for enteroviral culture include: throat swabs or washes, cerebral spinal fluid (CSF), ocular tissue, vesicular or ulcerative lesion, and stool. Specimens should be received in viral transport medium. Specimens not received in viral transport medium should be transferred to a tube of transport medium immediately upon receipt.

Specimen Transport and Storage

All potentially infectious agents should be transported according to International Air Transport Association (IATA), International Civil Aviation Organization, (ICAO), Titles 42 and 49 of the US Code of Federal Regulations, or other regulatory requirements, as may be applicable.

Specimens should be transported to the laboratory at 2°C to 8°C. This temperature can be attained by using cold packs, wet ice, foam refrigerant, or other coolants.13 The specimens should be processed and tested as soon as possible and then stored at 2°C to 8°C.
Specimens should be stored at 2°C to 8°C for no longer than 2 days before being tested. If longer storage is required, the specimens should be frozen at −70°C or lower.

Freezing and thawing of specimens should be avoided since this will result in a loss of viability of viruses, leading to decreased sensitivity of the test.

PROCEDURE

Preliminary Comments and Precautions

- Adhere to the recommended volumes and times in the following procedure to ensure that accurate results are obtained.
- For specimen swabs received in transport medium with glass beads, vortex vigorously for about 15 seconds to dissociate adhered cells. For swabs not received in transport medium, transfer them to a tube of transfer medium containing glass beads and vortex vigorously for about 15 seconds to dissociate adhered cells.
- When staining with fluorescent reagents and examining cells microscopically for fluorescence, it is very important to include controls, both positive and negative, to monitor the procedure and performance of the reagents. It is recommended that such controls be run with each batch of patient specimens.
- Place the closed, humidified chamber for holding slides during staining in the incubator for equilibration to 35°C to 37°C prior to staining. By doing this, the test slides and reagents will come to temperature quickly, yielding more rapid, intense staining.
- Bring the Enterovirus MAb Reagent and Anti-mouse Conjugate to ambient temperature (20°C to 25°C) prior to use, and immediately return to refrigerator after use for storage at 2°C to 8°C.

Regarding Cell Culture Testing

- Good Laboratory Practice dictates that positive and negative virus controls be run with each new batch of cells to confirm their performance in culturing specific viruses.
- It is good practice to retain the medium removed from the monolayers until after staining results have been obtained. If there is any question concerning the specimen results, the medium can be passed to another monolayer and incubated for the appropriate time period for repeat testing.
- When using cell cultures in polystyrene multi-well plates, dilute the acetone fixative to 80% by adding 20 mL of demineralized water to 80 mL of acetone.
- Do not allow the monolayers to dry before fixing; this can lead to high background staining and decreased sensitivity.
- Do not allow the Enterovirus MAb Reagent or Anti-mouse Conjugate to dry on the monolayers; this can lead to high background.

Regarding Immunofluorescence Microscopy

- Examine the positive and negative controls before examining the test specimens. If one of these fails to perform as expected, review the steps and conditions under which the test was performed to determine the root cause(s). Do not report results for patient samples until controls perform as expected.
- Three aspects of the fluorescence microscope must be functioning properly and optimally in order to achieve maximum brightness of fluorescence:
 - The activation light source has a finite life and as it ages, its output decreases, resulting in lower fluorescence intensity from the Anti-mouse Conjugate.
 - The light source is focused by a number of lenses and mirror(s). For maximum intensity, these must be properly aligned.
 - The filters used in the light path must be appropriate for the particular fluor, in this case, fluorescein.
- Fluorescent artifacts may be observed in the cell monolayers:
Morphologically, staining artifacts do not have the appearance of a complete cell and typically do not appear to be on the plane of the monolayer. Cell debris, lint, etc. can non-specifically adsorb the Anti-mouse Conjugate, resulting in highly intense fluorescence.

A low grade, yellow-green fluorescence may sometimes be seen, particularly in areas that have piled cells or are near holes in the cell monolayer. In both cases, the diffusion of the entrapped Anti-mouse Conjugate is retarded during the wash step, resulting in the non-specific fluorescence.

Intense fluorescence around the periphery of slide wells is indicative of drying of the Anti-mouse Conjugate during incubation, suggesting that it was incubated too long or the humidity was not well controlled.

Inadequate washing can lead to general low-grade fluorescence due to residual Anti-mouse Conjugate remaining on the monolayer of cells.

Protect stained slides and monolayers from light as much as possible during testing. Bleaching or fading of the fluorescence of stained cells may occur on exposure to light, particularly light of high intensity. This bleaching can occur when a stained cell is viewed in a fluorescence microscope for an extended period of time.

Specimen Preparation

There are no special requirements for processing of specimens for enteroviral culture. Specimens should be processed according to established laboratory procedure.

Cell Culture Testing – Tube Culture

1. Examine the monolayers for proper morphology prior to inoculation.
2. Aspirate maintenance medium from the monolayers and add 0.2 to 0.4 mL of each prepared specimen (see Specimen Preparation) to each of the cell lines used for enterovirus cultures.
3. Place the tubes at an angle sufficient for the monolayers to be covered by the inoculum. Place tubes in an incubator for 1 hour at 35°C to 37°C to allow virus adsorption to occur.
4. After adsorption, add 2 mL of appropriate refeed medium.
5. Incubate the tubes at 35°C to 37°C in a roller drum at 1 to 3 rpm or in a stationary rack at an angle sufficient for the monolayers to be covered by the inoculum and medium. Examine the monolayers daily for evidence of toxicity or viral CPE.
6. When the monolayers are ready to be stained, remove the medium by aspiration and gently rinse the monolayer two times with 1 mL 1X PBS.
7. Add 0.5 mL of 1X PBS to the tube and prepare a suspension of the cells by scraping the monolayer using a pipette and breaking the cell aggregates up by pipetting up and down several times.
8. Prepare cell spots using about 25 µL of the suspension onto an acetone cleaned slide. Repeat this step for each specimen.
9. Air-dry the wells completely.
10. Fix the cells to the slides using fresh, chilled 100% acetone. Let stand for 5 to 10 minutes, at 20°C to 25°C. Caution: Acetone is volatile and flammable; keep away from open flames.
11. Remove the slides from the fixative and allow to air dry.
12. Add one drop of the Enterovirus MAb Reagent to completely cover the dried, fixed cells on the slide.
13. Place the slides in a covered chamber at 35°C to 37°C for 30 minutes.
14. Rinse the stained cells using the 1X PBS. For only a few slides, this can be done using a beaker of the 1X PBS. For many slides, a slide carrier that holds 10 to 20 slides can be placed in its container with 1X PBS. For effective rinsing, dip the slide(s) up and down a minimum of four times.
15. Discard the used PBS and repeat the washing step using new 1X PBS.
16. Gently blot the excess liquid.
17. Add one drop of the Anti-mouse Conjugate to completely cover the dried, fixed cells on the slide.
18. Place the slides in a covered chamber at 35°C to 37°C for 30 minutes.
19. Rinse the stained cells using the 1X PBS. For only a few slides, this can be done using a beaker of the 1X PBS. For many slides, a slide carrier that holds 10 to 20 slides can be placed in its container with 1X PBS. For effective rinsing, dip the slide(s) up and down a minimum of four times.
20. Discard the used PBS and repeat the washing step using new 1X PBS.
21. Rinse the stained cells using de-mineralized water. For only a few slides, this can be done using a beaker of the de-mineralized water. For many slides, a slide carrier that holds 10 to 20 slides can be placed in its container with de-mineralized water. For effective rinsing, dip the slide(s) up and down a minimum of four times.
22. Gently blot the excess liquid.
23. Add a small drop of Mounting Fluid to each cell-containing well and cover the wells with a coverslip.
24. Examine the stained, mounted cells using a fluorescence microscope with magnifications between 200X to 400X (see *Regarding Immunofluorescence Microscopy*).
25. Refer to **INTERPRETATION OF RESULTS**.

Cell Culture Testing – Shell-vial

1. Calculate the number of shell-vials needed based on the staining protocol to be used (this staining protocol requires 2 shell-vials):
 - One shell-vial is required for each day the culture will be screened with the D³ IFA Enterovirus Identification Kit (i.e., staining at 48 to 72 hours, and then at 5 to 7 days, requires 2 shell-vials).
2. Examine the monolayers for proper morphology prior to inoculation.
3. Aspirate maintenance medium from the monolayers and add 1 mL of appropriate refeed medium to each shell-vial.
4. Add 0.2 to 0.4 mL of prepared specimen to each shell-vial.
5. Centrifuge the shell-vials at 700xg for 1 hour at 20°C to 25°C.
6. Place stoppered shell-vials in an incubator at 35°C to 37°C.
7. When a monolayer is ready to be stained using the Enterovirus MAb Reagent, remove the medium and add 1 mL of 1X PBS.
8. Swirl to mix and then aspirate.
9. Repeat this wash with another 1 mL of 1X PBS and then aspirate.
10. Add 1 mL of fresh, chilled 100% acetone and allow to stand for 5 to 10 minutes at 20°C to 25°C.
 - **Caution:** *Acetone is volatile and flammable; keep away from open flames.*
11. Remove the fixative by aspiration.
12. Add 0.5 mL of 1X PBS to wet the monolayer.
13. Swirl and then aspirate completely.
14. Add 4 drops of the Enterovirus MAb Reagent to the fixed monolayers of patient and control samples, and rock to ensure complete coverage of the monolayer by the MAb Reagent.
15. Place stoppered shell-vials in a 35°C to 37°C incubator for 30 minutes.
16. Aspirate the Enterovirus MAb Reagent from the monolayers.
17. Add 1 mL of the 1X PBS.
18. Remove the 1X PBS by aspiration, repeat the wash step, and again remove by aspiration.
19. Add 4 drops of the Anti-mouse Conjugate to the fixed monolayers of patient and control samples, and rock to ensure complete coverage of the monolayer by the Conjugate.
20. Place stoppered shell-vials in a 35°C to 37°C incubator for 30 minutes.
21. Aspirate the Anti-mouse Conjugate from the monolayers.
22. Add 1 mL of the 1X PBS.
23. Remove the 1X PBS by aspiration; repeat the wash step, and again remove by aspiration.
24. Add 1 mL of de-mineralized water.
25. Remove the de-mineralized water by aspiration.
26. Lift the coverslip from the bottom of the shell-vial using a bent-tip needle on a syringe barrel. Grasping it with the fine-tipped forceps, transfer it, monolayer-side down, to a small drop of Mounting Fluid on a standard microscope slide.

27. Examine the stained monolayers using a fluorescence microscope with magnifications between 200X to 400X (See Regarding Immunofluorescence Microscopy.)

28. Refer to INTERPRETATION OF RESULTS.

Cell Culture Testing – Multi-well Plate

1. Calculate the number of wells needed for the staining protocol to be used (this staining protocol requires 2 wells):
 - One well is required for each day the culture will be screened with the D³ IFA Enterovirus Identification Kit (i.e., staining at 48 to 72 hours, and again at 5 to 7 days, requires 2 wells).
 - It is recommended that each replicate well be on a different multi-well plate. This allows each plate to be processed on the appropriate day.

2. Examine the monolayers for proper morphology prior to inoculation.

3. Aspirate maintenance medium from the monolayers and add 1 mL of appropriate refeed medium to each 24-well multi-well plate monolayer; add 0.8 mL to each 48-well plate monolayer.

4. Add 0.2 to 0.4 mL of prepared specimen to the appropriate wells of a multi-well plate.

5. Centrifuge the multi-well plates at 700xg for 1 hour at 20°C to 25°C.

6. Place the covered multi-well plates in a 35°C to 37°C incubator with a humidified, 5% CO₂ atmosphere.

7. When a monolayer is ready to be stained using the Enterovirus MAb Reagent, remove the medium by aspiration and add 1 mL of 1X PBS.

8. Swirl to mix and then aspirate.

9. Repeat this wash with another 1 mL of 1X PBS and then aspirate.

10. Add 1 mL of 80% aqueous acetone and let stand 5 to 10 minutes at 20°C to 25°C.

 NOTE: Do not allow the 80% acetone fixative to remain in the polystyrene wells longer than 10 minutes since it may craze and cloud the plastic, making it difficult to examine the monolayers.

 Caution: Acetone is volatile and flammable; keep away from open flames.

11. Remove the fixative by aspiration.

12. Add 0.5 mL of the 1X PBS to wet the monolayer.

13. Swirl and then aspirate completely.

14. To each well of a 24-well plate, add 4 drops of the Enterovirus MAb Reagent to the fixed monolayers of patient and control samples; to each well of a 48-well plate, add 3 drops of the Enterovirus MAb Reagent to the fixed monolayers of patient and control samples. Rock to ensure complete coverage of the monolayer by the MAb Reagent.

15. Place the covered multi-well plate in a 35°C to 37°C, humidified incubator for 30 minutes.

16. Aspirate the Enterovirus MAb Reagent from the monolayers.

17. Add 1 mL of the 1X PBS and mix to wash.

18. Remove 1X PBS by aspiration; repeat the wash step, and again remove by aspiration.

19. To each well of a 24-well plate, add 4 drops of the Anti-mouse Conjugate to the fixed monolayers of patient and control samples; to each well of a 48-well plate, add 3 drops of the Anti-mouse Conjugate to the fixed monolayers of patient and control samples. Rock to ensure complete coverage of the monolayer by the Conjugate.

20. Place the covered multi-well plate in a 35°C to 37°C, humidified incubator for 30 minutes.

21. Aspirate the Anti-mouse Conjugate from the monolayers.

22. Add 1 mL of the 1X PBS and mix to wash.

23. Remove the 1X PBS by aspiration, repeat the wash step, and again remove by aspiration.

24. Add 1 mL of de-mineralized water.

25. Remove the de-mineralized water by aspiration.

26. Add 2 to 3 drops of Mounting Fluid to each monolayer, then cover the plate.
27. Examine the stained monolayers using a fluorescence microscope with magnifications between 200X to 400X (See Regarding Immunofluorescence Microscopy.)
28. Refer to INTERPRETATION OF RESULTS.

Quality control

Reagents
- A fresh Enterovirus Antigen Control Slide should be stained each time the staining procedure is performed to ensure proper test performance.
- The positive wells will show multiple infected cells of bright apple-green fluorescence with negative cells staining a dull red due to the included Evans Blue counter-stain.
- The negative well will show only negative cells staining a dull red.
- Positive and negative controls must demonstrate appropriate fluorescence for specimen results to be considered valid. Antigen Control Slides may also aid in the interpretation of patient specimens.

Cell Culture
- Positive and negative enterovirus controls should be run with each new batch of cells to confirm their performance in culturing enteroviruses.
- To ensure viral sensitivity, enterovirus-inoculated control monolayers should be included each time a new lot of cell culture is used.
- A non-inoculated monolayer from each lot should be stained to serve as a negative control. Adverse storage conditions or handling procedures will also be reflected in the negative control.
- If control cultures fail to perform correctly, results are considered invalid.

INTERPRETATION OF RESULTS

Examination of Samples and Controls
- Examine controls first to ensure proper test performance before examining patient specimens.
- A positive reaction for enterovirus is one in which bright apple-green fluorescence is observed in the infected cells.
- Non-infected cells will fluoresce dull red due to the Evans Blue counter-stain included in the Anti-mouse Conjugate.
- Examine the entire cell spot or monolayer of cells before reporting final negative results. Do not report results for patient samples unless controls perform as expected.

Artifacts of Staining
- Dried edges of the monolayer or cell clumps may non-specifically fluoresce due to antibody trapping.
- Dead, rounded cells may non-specifically fluoresce dull olive-green due to specimen toxicity or improper cell storage.
- Properly controlled humidity during staining and adequate washing between steps helps to eliminate non-specific staining.

Results From Culture Isolation/Confirmation
- The bright apple-green fluorescence staining pattern is cytoplasmic.
- Examine the entire cell spot or monolayer of cells for enterovirus-specific fluorescent cells. If no fluorescent cells are found, report: “No enterovirus isolated by cell culture.”
- If enterovirus-specific fluorescence is observed, report as “Enterovirus isolated by cell culture.”
LIMITATIONS OF THE PROCEDURE

- Inappropriate specimen collection, storage, and transport may lead to false negative culture results.
- Incubation times or temperatures other than those cited in the test instructions may give erroneous results.
- Detection of viruses will vary greatly depending upon the specimen quality and subsequent handling. A negative result does not exclude the possibility of virus infection. Results of the test should be interpreted in conjunction with information available from epidemiological studies, clinical evaluation of the patient and other diagnostic procedures.
- Since the MAbs have been prepared using defined virus strains, they may not detect all antigenic variants or new strains of the enteroviruses, should they arise. MAbs may fail to detect strains of viruses which have undergone minor amino acid changes in the target epitope region.
- A negative result on a direct or cultured specimen does not rule out the presence of virus.
- Performance of the kit can only be assured when components used in the assay are those supplied by Quidel.
- Prolonged storage of the Anti-mouse Conjugate under bright light will decrease the staining intensity.
- Limited cross-reactivity was seen with Adenovirus types 11 and 16.
- Light background staining may occur with specimens contaminated with Staphylococcus aureus strains containing large amounts of protein A. Protein A will bind to the Fc portions of conjugated antibodies. Such binding can be distinguished from viral antigen binding on the basis of morphology, i.e., S. aureus-bound fluorescence appears as small (~1-micron diameter), bright dots. Results from cell cultures with bacterial contamination must, therefore, be interpreted with caution.
- Any nuclear non-specific fluorescence present in cultured cells or on antigen control slides should be interpreted as negative for enterovirus.

SPECIFIC PERFORMANCE CHARACTERISTICS

Enterovirus Reactivity

A total of 224 clinical enterovirus isolates were re-cultured and tested with the D³ IFA Enterovirus Identification Kit at two locations (Site 1: 168, Site 2: 56). The identity of each isolate was determined by neutralization. The D³ IFA Enterovirus Identification Kit correctly identified all enterovirus isolates when compared to the neutralization results. The data is summarized in Table 2.

Table 2. Enterovirus Isolates Correctly Identified By
D³ IFA Enterovirus Identification Kit Compared to Neutralization Results

<table>
<thead>
<tr>
<th>Enterovirus Type</th>
<th># of Isolates</th>
<th>Enterovirus Type</th>
<th># of Isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coxsackie A9</td>
<td>20</td>
<td>Echovirus 9</td>
<td>17</td>
</tr>
<tr>
<td>Coxsackie A16</td>
<td>5</td>
<td>Echovirus 11</td>
<td>20</td>
</tr>
<tr>
<td>Coxsackie A24</td>
<td>1</td>
<td>Echovirus 13</td>
<td>1</td>
</tr>
<tr>
<td>Coxsackie B1</td>
<td>6</td>
<td>Echovirus 14</td>
<td>4</td>
</tr>
<tr>
<td>Coxsackie B2</td>
<td>20</td>
<td>Echovirus 15</td>
<td>1</td>
</tr>
<tr>
<td>Coxsackie B3</td>
<td>11</td>
<td>Echovirus 18</td>
<td>5</td>
</tr>
<tr>
<td>Coxsackie B4</td>
<td>9</td>
<td>Echovirus 21</td>
<td>1</td>
</tr>
<tr>
<td>Coxsackie B5</td>
<td>16</td>
<td>Echovirus 24</td>
<td>2</td>
</tr>
<tr>
<td>Coxsackie B6</td>
<td>1</td>
<td>Echovirus 25</td>
<td>2</td>
</tr>
<tr>
<td>Echovirus 3</td>
<td>3</td>
<td>Echovirus 30</td>
<td>18</td>
</tr>
<tr>
<td>Echovirus 4</td>
<td>8</td>
<td>Enterovirus 70</td>
<td>2</td>
</tr>
<tr>
<td>Echovirus 5</td>
<td>8</td>
<td>Enterovirus 71</td>
<td>5</td>
</tr>
</tbody>
</table>
Enterovirus Specificity

D³ IFA Enterovirus Identification Kit was tested for cross-reactivity against a wide variety of cells and microorganisms. No cross-reactivity was observed for 59 virus strains (cultured and processed for staining) or for 17 host culture cell types. Thirty-two (32) bacterial cultures were stained and examined for cross-reactivity, including *Staphylococcus aureus*, a protein-A producing bacterium. Staining of *S. aureus* appeared as small points of fluorescence (see LIMITATIONS OF PROCEDURE) while all other bacterial cultures were negative. (Tables 3, 4 and 5 below list the organisms which were tested for cross-reactivity with the Enterovirus MAb Reagent.)

Forty-one (41) virus strains were tested for cross-reactivity. No cross reactivity was observed for the viruses listed below.

<table>
<thead>
<tr>
<th>Enterovirus Type</th>
<th># of Isolates</th>
<th>Enterovirus Type</th>
<th># of Isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echovirus 6</td>
<td>10</td>
<td>Poliovirus type 1</td>
<td>4</td>
</tr>
<tr>
<td>Echovirus 7</td>
<td>12</td>
<td>Poliovirus type 2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poliovirus type 3</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 3. Virus Strains Used in Cross-reactivity Study

<table>
<thead>
<tr>
<th>Virus Type</th>
<th>Strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenovirus</td>
<td>Type 1</td>
</tr>
<tr>
<td></td>
<td>Type 3</td>
</tr>
<tr>
<td></td>
<td>Type 5</td>
</tr>
<tr>
<td></td>
<td>Type 6</td>
</tr>
<tr>
<td></td>
<td>Type 7</td>
</tr>
<tr>
<td></td>
<td>Type 14</td>
</tr>
<tr>
<td></td>
<td>Type 18</td>
</tr>
<tr>
<td>Influenza A</td>
<td>Aichi</td>
</tr>
<tr>
<td></td>
<td>Mal</td>
</tr>
<tr>
<td></td>
<td>Hong Kong</td>
</tr>
<tr>
<td></td>
<td>Denver</td>
</tr>
<tr>
<td></td>
<td>Port Chalmers</td>
</tr>
<tr>
<td></td>
<td>Victoria</td>
</tr>
<tr>
<td></td>
<td>New Jersey</td>
</tr>
<tr>
<td></td>
<td>PR</td>
</tr>
<tr>
<td>Influenza B</td>
<td>Hong Kong</td>
</tr>
<tr>
<td></td>
<td>Maryland</td>
</tr>
<tr>
<td></td>
<td>Mass</td>
</tr>
<tr>
<td></td>
<td>Taiwan</td>
</tr>
<tr>
<td></td>
<td>GL</td>
</tr>
<tr>
<td></td>
<td>Russia</td>
</tr>
<tr>
<td>RSV</td>
<td>Long</td>
</tr>
<tr>
<td></td>
<td>Wash</td>
</tr>
<tr>
<td></td>
<td>9320</td>
</tr>
<tr>
<td></td>
<td>Parainfluenza 1</td>
</tr>
<tr>
<td></td>
<td>Parainfluenza 2</td>
</tr>
<tr>
<td></td>
<td>Parainfluenza 3</td>
</tr>
<tr>
<td>HSV-1</td>
<td>1F</td>
</tr>
<tr>
<td></td>
<td>CWOH 0026</td>
</tr>
<tr>
<td></td>
<td>CWOH 0015</td>
</tr>
<tr>
<td></td>
<td>MacIntyre</td>
</tr>
<tr>
<td>HSV-2</td>
<td>MS</td>
</tr>
<tr>
<td></td>
<td>Strain G</td>
</tr>
<tr>
<td>CMV</td>
<td>Towne</td>
</tr>
<tr>
<td></td>
<td>Davis</td>
</tr>
<tr>
<td></td>
<td>AD169</td>
</tr>
<tr>
<td>Varicella</td>
<td>Webster</td>
</tr>
<tr>
<td></td>
<td>Ellen</td>
</tr>
<tr>
<td>Mumps</td>
<td>Bion, (CDC V5-004)</td>
</tr>
<tr>
<td>Rubeola</td>
<td>Bion</td>
</tr>
<tr>
<td>Epstein Barr</td>
<td>Bion</td>
</tr>
</tbody>
</table>
Eighteen (18) host culture cells were tested for cross-reactivity; no cross-reactivity was observed for the following:

Table 4. Cell lines Used in Cross-reactivity Study

<table>
<thead>
<tr>
<th>A549</th>
<th>NCI-H292</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGMK</td>
<td>pCMK</td>
</tr>
<tr>
<td>HEP-2</td>
<td>pRhMK</td>
</tr>
<tr>
<td>LLC-MK2</td>
<td>pRK</td>
</tr>
<tr>
<td>MDCK</td>
<td>RD</td>
</tr>
<tr>
<td>MRC-5</td>
<td>RhMK II</td>
</tr>
<tr>
<td>MRHF</td>
<td>R-Mix</td>
</tr>
<tr>
<td>MV1Lu</td>
<td>Vero</td>
</tr>
<tr>
<td>Super E-Mix</td>
<td>WI-38</td>
</tr>
</tbody>
</table>

Thirty-two (32) bacterial cultures were stained and examined for cross-reactivity, including *Staphylococcus aureus*, a protein A producing bacterium (see LIMITATIONS OF PROCEDURE). Staining of *S. aureus* appeared as small points of fluorescence while all other cultures were negative.

Table 5. Bacteria Used in Cross-reactivity Study

<table>
<thead>
<tr>
<th>Acholeplasma laidlawii</th>
<th>Mycoplasma hominis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acinetobacter calcoaceticus</td>
<td>Mycoplasma orale</td>
</tr>
<tr>
<td>Bordetella bronchiseptica</td>
<td>Mycoplasma pneumoniae</td>
</tr>
<tr>
<td>Bordetella pertussis</td>
<td>Mycoplasma salivarium</td>
</tr>
<tr>
<td>Candida glabrata</td>
<td>Neisseria gonorrhoeae</td>
</tr>
<tr>
<td>Chlamydia psittaci</td>
<td>Peptostreptococcus anaerobius</td>
</tr>
<tr>
<td>Chlamydia trachomatis</td>
<td>Proteus mirabilis</td>
</tr>
<tr>
<td>Clostridium diphtheriae</td>
<td>Pseudomonas aeruginosa</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>Salmonella enteritidis</td>
</tr>
<tr>
<td>Gardnerella vaginalis</td>
<td>Salmonella typhimurium</td>
</tr>
<tr>
<td>Haemophilus influenzae type A</td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>Streptococcus agalactiae</td>
</tr>
<tr>
<td>Legionella pneumophila</td>
<td>Streptococcus pneumoniae</td>
</tr>
<tr>
<td>Moraxella cartarrhalis</td>
<td>Streptococcus pyogenes</td>
</tr>
<tr>
<td>Mycobacterium avium</td>
<td>Trichomonas vaginalis</td>
</tr>
<tr>
<td>Mycobacterium intracellulare</td>
<td>Ureaplasma urealyticum</td>
</tr>
</tbody>
</table>

Stringent conditions for cross-reactivity testing were achieved by using a high concentration of primary monoclonal antibody and high titers of microorganisms. The primary Enterovirus MAb Reagent was prepared at 1.5X the concentration that is provided in the kit. The fluorescein-labeled goat anti-mouse secondary reagent (Anti-mouse Conjugate) was used as supplied in the kit. Each of the tested viruses was prepared as infected cell monolayers (250 infected cells inoculated into a shell-vial culture and incubated for 24 to 48 hours, to yield a 3+ to 4+ infection), and processed and stained with the 1.5X Enterovirus MAb Reagent according to the procedure detailed in this product insert. Bacterial strains were cultured, processed as suspensions, then spotted on microscope slides (yielding > 150 bacteria per 400X microscope field), then stained with the 1.5X Enterovirus MAb Reagent according to the procedure in this product insert. Cell cultures were stained as confluent monolayers.
ASSISTANCE
To place an order or for technical support, please contact a Quidel Representative at 800.874.1517 (in the U.S.) or 858.552.1100 (outside the U.S.), Monday through Friday, from 8:00 a.m. to 5:00 p.m., Eastern Time. Orders may also be placed by fax at (740) 592-9820. For e-mail support contact customerservice@quidel.com or technicalsupport@quidel.com.

For services outside the U.S., please contact your local distributor. Additional information about Quidel, our products, and our distributors can be found on our website quidel.com.

REFERENCES
14. IBID, pg. 28
15. IBID, pp. 22 - 25