An enzyme immunoassay to measure the total classical complement pathway activity in human serum

For *In Vitro* Diagnostic Use.

ENGLISH
MicroVue™ CH50 Eq EIA Summary

Reagents, Standards, Controls, and Samples Preparation
- Dilute Wash Solution Concentrate 1:20 with DI Water
- Reconstitute each Control with 100 μL deionized or distilled water (let sit for 15 minutes at room temperature. Vortex, then place on ice)

Assay Procedure

1. Pipette 86 μL of Activator to dilution tubes or dilution wells
2. Pipette 14 μL of Controls and Specimen into dilution tubes or dilution wells and mix carefully
3. Cover dilution tubes or dilution wells and incubate 60 ± 1 min at 37°C
4. Dilute activated Controls and Specimen 1:200 with Complement Specimen Diluent into new tubes or dilution wells (store up to 14 days at -20°C)
5. Add ~ 300 μL of Wash Solution into assay wells
6. Incubate 2 min at 15 – 30°C
7. Remove liquid from each well (Blot dry)
8. Pipette 100 μL of Specimen Diluent (blank), Standards, activated Controls, and activated Specimens into assay wells
9. Incubate 60 ± 1 min at 15 – 30°C
10. Wash 7 times with Wash Buffer (Incubate first wash 1 minute)
11. Pipette 50 μL of Conjugate
12. Incubate 60 ± 1 min at 15 – 30°C
13. Wash 7 times with Wash Buffer (Incubate first wash 1 minute)
14. Pipette 100 μL Substrate Solution
15. Incubate 15 ± 1 min at 15 – 30°C
16. Pipette 100 μL Stop Solution
17. Read the Optical Density at 450 nm
18. Analyze the assay results using a linear curve fit (y = mx + b)
INTENDED USE

The MicroVue CH50 Eq EIA measures the total classical complement pathway activity in human serum and allows detection of a deficiency of one or more of the complement components C1 through C9.

SUMMARY AND EXPLANATION

The binding of C1q component of C1 to immune complexes triggers the classical complement pathway. This activation results in a cascade of enzymatic and non-enzymatic reactions, culminating in the formation of terminal complement complexes (TCC). Under standard conditions the level of TCC that can be generated in a serum is a quantitative expression of the serum’s total classical complement activity.

The traditional method for measuring the total classical complement activity in serum is the CH50 test. This test is a lytic assay, which uses antibody-sensitized sheep erythrocytes (EA) as the activator of the classical complement pathway and various dilutions of the test serum to determine the amount required to give 50% lysis. The percent hemolysis is determined spectrophotometrically. The CH50 test is an indirect measure of TCC, since the TCC themselves are directly responsible for the hemolysis that is measured.

The MicroVue CH50 Eq EIA provides a direct measure of the total classical complement activity in serum by quantifying the amount of TCC generated under standard conditions. The MicroVue CH50 Eq EIA uses a monoclonal antibody to a unique neoantigen to capture the TCC analyte. Since both the CH50 Eq EIA and the CH50 test rely on the generation of TCC and correlate, the CH50 Eq EIA’s results are expressed in CH50 unit equivalents per milliliter.

PRINCIPLE OF THE PROCEDURE

The MicroVue CH50 Eq EIA for quantifying the total classical complement activity in human serum involves three basic procedures: (1) complement activation; (2) sample dilution; and (3) assay for terminal complement complexes (TCC).

To activate the classical complement pathway, undiluted human serum samples and the Controls are added to microassay wells or to test tubes containing the Activator. During incubation the classical pathway of complement is triggered and TCC are generated.

In the second step, the activated sera are diluted in microassay wells or test tubes and dispensed, together with kit Standards, directly into a microassay plate. The TCC present in the activated samples bind to the monoclonal antibodies coating the surface of the microassay wells.

In the third step, the TCC microassay plate is washed and loaded with an HRP-conjugate, which will bind to the bound TCC. After washing, the TCC microplate is loaded with a chromogenic enzyme Substrate. After incubation a reagent is added to stop color development. The absorbencies (A values) generated with the Controls, kit Standards, and test specimens are measured spectrophotometrically. The color intensity of the reaction mixture is proportional to the concentration of TCC present and to CH50 units. Using the kit standard curve, assay results are expressed in CH50 unit equivalents per milliliter (CH50 U Eq/mL).
REAGENTS AND MATERIALS PROVIDED

The CH50 Eq EIA kit contains the following:

A Standards: Parts A3719 – A3723 1 each, 1.5 mL
B Each contains human serum with assigned CH50 unit equivalents per mL (U Eq/mL), protein stabilizers
C
D
E

N Normal Control Part A3724 3 each, 100 μL
(Lyophilized) When reconstituted, each contains human serum
L Low Control Part A3725 3 each, 100 μL
(Lyophilized) When reconstituted, each contains human serum

1 Microassay Plate Part A3840 1 each
96-well with retainer and holder consisting of 12 eight-well strips coated with a mouse monoclonal antibody in a resealable foil pouch

2 Stop Solution Part A9947 12 mL
Contains 1N (4%) Hydrochloric acid

3 20X Wash Solution Concentrate Part A9957 2 each, 50 mL
Contains phosphate buffered saline (PBS), 1.0% Tween-20®, and 0.035% ProClin® 300

4 Complement Specimen Diluent Part A3670 50 mL
Contains phosphate buffered saline (PBS), 0.05% Tween-20, 2.5% protein stabilizers, 0.035% ProClin 300

5 TMB Substrate Part 5059 12 mL
Contains 3,3',5,5' tetramethylbenzidine (TMB) and Hydrogen Peroxide (H₂O₂)

6 Conjugate Part A3726 7 mL
Contains horseradish peroxidase-conjugated (goat) antibodies to TCC

7 Activator Part A3718 10 mL
Contains human gammaglobulins and murine monoclonal antibodies in phosphate buffered saline (PBS) with 0.035% ProClin 300

Tween-20® is a registered trademark of ICI Americas Inc.
ProClin® is a registered trademark of Rohm and Haas Company.

MATERIALS REQUIRED BUT NOT PROVIDED

• Timer (60 minute range)
• Calculator or other computational method to validate the assay
• Clean, unused microassay plates and/or test tubes and racks
• Container for wash buffer dilution
• Wash bottle or other immunoassay washing system
• Adjustable multichannel pipette (8 or 12 channels) or repeating micropipettes (optional)
• Clean pipettes, 1 mL, 5 mL, and 10 mL
• Micropipettes and pipette tips
• Plate reader capable of optical density A₄₅₀ readings between 0.0 and 3.0
• Deionized or distilled water
• Incubator or microassay plate heater (37°C)
• Water bath (37°C)
WARNINGS AND PRECAUTIONS

1. For In Vitro diagnostic use.
2. Treat specimen samples as potentially biohazardous material. Follow Universal Precautions when handling contents of this kit and any patient samples.
3. Wear suitable protective clothing, gloves, and eye/face protection when handling contents of this kit.
4. Use the supplied reagents as an integral unit prior to the expiration date indicated on the package label.
5. Store assay reagents as indicated.
6. Do not use Coated Strips if pouch is punctured.
7. ProClin® 300 is used as a preservative. Incidental contact with or ingestion of buffers or reagents containing ProClin can cause irritation to the skin, eyes or mouth. Use good laboratory practices to reduce exposure. Seek medical attention if symptoms are experienced.
8. The Stop Solution is considered corrosive and can cause irritation. Do not ingest. Avoid contact with eyes, skin, and clothing. If contact is made, immediately rinse affected area with water. If ingested, call a physician.
9. Each donor unit used in the preparation of the standards and control sera of this product was tested by an FDA-approved method for the presence of antibody to human immunodeficiency virus (HIV1 and HIV2) and to hepatitis C virus, as well as for hepatitis B surface antigen. Since no test method can offer complete assurance that infectious agents are absent, these reagents should be handled at Biosafety Level 2 as recommended for any potentially infectious human serum or blood specimen in the Centers for Disease Control/National Institutes of Health manual “Biosafety in Microbiological and Biomedical Laboratories,” 2007.
10. Use of multichannel pipettes or repeat pipettors is recommended to ensure timely delivery of reagents.
11. For accurate measurement of samples, add samples and standards precisely. Pipette carefully using only calibrated equipment.
12. Proper collection and storage of test specimens are essential for accurate results (see SPECIMEN COLLECTION AND STORAGE).
13. Avoid microbial or cross-contamination of specimens, reagents, or materials. Incorrect results may be obtained if contaminated.
14. Test each sample in duplicate.
15. Do not use a microassay well for more than one test.
16. Using incubation times and temperatures other than those indicated in the ASSAY PROCEDURE section may give erroneous results.
17. The TMB Substrate must be protected from light during storage and incubation. Avoid contact with eyes, skin, and clothing. If contact is made, immediately rinse affected area with water.
18. Do not allow microassay wells to dry once the assay has begun.
19. When adding or aspirating liquids from the microassay wells, do not scrape or touch the bottom of the wells.
20. Heat-inactivated, hyperlipemic or contaminated specimens may give erroneous results.

21. To avoid aerosol formation during washing, use an apparatus to aspirate the wash fluid into a bottle containing household bleach.

22. A wash bottle or automated filling device should be used to wash the plate (ASSAY PROCEDURE, Step 9). For best results, do not use a multichannel pipette to wash the microassay plate.

23. Dispose of containers and unused contents in accordance with Federal, State and Local regulations.

STORAGE

Store unopened kit at 2–8°C. After the kit is opened, the 20X Wash Solution Concentrate may be stored at 2–30°C.

After selecting the reagents or materials to be used in the assay, return the unused reagents immediately to their appropriate storage temperatures. Bring reagents and materials to room temperature (15–30°C) before use.

INDICATIONS OF INSTABILITY OR DETERIORATION OF REAGENTS

Cloudiness or discoloration of the diluted Wash Solution indicates a deterioration of this reagent. If this occurs, the solution should be discarded.

The Activator may contain particles. This is normal and does not affect performance of the assay.

SPECIMEN COLLECTION AND STORAGE

Use serum as the specimen in this assay. Plasma is not acceptable.

Handle and dispose of all specimens using Universal Precautions.

The proper collection, processing, storage, and shipment of specimens is essential, since complement may be activated in improperly handled specimens. This could lead to erroneous results.

Serum specimens should be collected aseptically and prepared using standard techniques for clinical laboratory testing. Samples can be stored up to 2 hours at room temperature, up to 4 hours on ice, up to 3 days at 4°C, and at -70°C or below for long-term storage. Do not subject samples to more than 6 freeze/thaw cycles. Frozen specimens should be tested as soon as possible after thawing or stored on ice (for no longer than four hours) until assayed.

Specimens should be packed in excess dry ice for shipping. Specimens that arrive thawed at the testing facility may be compromised. After receiving a shipment, samples can be stored at -70°C or below.

REAGENT PREPARATION

After removing the needed reagents and materials, return the unused items to their appropriate storage temperatures (see STORAGE). Bring all reagents and materials for the assay to room temperature (15–30°C) before use.
1. **Wash Solution**
Mix the 20X Wash Solution Concentrate by inverting the bottle several times. If the 20X Wash Solution Concentrate has been stored at 2–8°C, crystals may have formed. To dissolve the crystals, warm the bottle in a 37-50°C water bath until all crystals have dissolved and follow by mixing thoroughly. Prepare the Wash Solution by diluting the entire contents of one of the bottles of 20X Wash Solution Concentrate up to one liter with distilled or deionized water. Mix thoroughly. The Wash Solution is stable for 30 days when stored in a clean container at 2–8°C. If discoloration or cloudiness occurs, discard the reagent.

2. **Selecting the Microassay Strips**
Determine the number of wells required for the assay. It is recommended that the blank wells, Controls, and Standards be tested in duplicate. Remove the strip retainer from the assembled plate. Remove the unneeded strips and place them in the storage bag, reseal the bag and return it to storage at 2–8°C. Secure the strips to be used in the assay.

3. **Specimen Dilution**
Caution: Treat all specimens as if potentially infectious. Do not use heat-inactivated, contaminated specimens, or improperly stored specimens. Serum specimens are required for this assay.
Serum samples should be thawed quickly by placing them briefly in a 37°C water bath. Immediately upon thawing, place the samples on ice until the activation step (see ASSAY PROCEDURE). Do not dilute the test samples prior to activation.

4. **Preparation of Normal and Low Controls**
To one vial each of the lyophilized Normal and Low Control add 100 μL of deionized or distilled water. Mix briefly to ensure reconstitution and let sit for fifteen (15) minutes at room temperature. Vortex again and place on ice until ready for the activation step.

ASSAY PROCEDURE
Read entire product insert before beginning the assay.
See REAGENT PREPARATION and WARNINGS AND PRECAUTIONS before proceeding.

1. **Activation of Samples and Controls.** Mix the Activator, which contains readily suspendable particles, by swirling the bottle before use. Swirl frequently during this step to ensure suspension of the particles. Add 86 μL of Activator to the appropriate number of test tubes or microassay wells.* Next add 14 μL of undiluted serum specimen, Normal Control, or Low Control to individual test tubes or microassay wells containing the Activator. Mix carefully. Cover to minimize evaporation. Incubate at 37°C for sixty (60) minutes. (FOR YOUR CONVENIENCE: If you wish to batch samples, after activation you may store the undiluted, activated samples at -20°C or colder for up to 14 days before proceeding to the next steps.)

* The number of test tubes or microassay wells required for activation equals the number of test samples plus two (2) additional ones for activation of the two Controls.
2. **Dilution of Activated Samples and Controls.** After activation, dilute the activated samples and activated Controls 1:200 in Specimen Diluent in clean, unused microassay wells or in test tubes.

3. Prepare the microassay strips as follows:
 a. Rehydrate microassay wells by filling each with Wash Solution (250-300 μL/well) to each well using a wash bottle or an automated device.
 b. Incubate at room temperature (15–30°C) for two minutes.
 c. Remove the liquid from each well.
 d. Invert the plate and tap firmly on absorbent paper repeatedly to remove any remaining liquid.

4. Add 100 μL of Specimen Diluent to the duplicate wells that will be used to blank the plate reader.

5. Add 100 μL of each ready-to-use Standard (A-E) to duplicate wells. **Note that the standards have already been diluted and are ready to use.**

6. Add 100 μL of the diluted, activated Normal and Low Controls to duplicate wells.

7. Add 100 μL of each diluted specimen in duplicate to its assigned microassay wells.

8. Incubate at room temperature (15–30°C) for 60 ± 1 minutes.

9. Wash the microassay wells as follows: **Note: A multi-channel pipette is not recommended for this step.**
 a. After the incubation in step 8 (or in step 12 below) remove the liquid from each well.
 b. Using a wash bottle, automated plate washer, or other washing device, fill each well with the Wash Solution (250–300 μL/well).
 c. Incubate the wells for 1 minute at room temperature (15–30°C).
 d. Remove the liquid from each well.
 e. Fill each well with Wash Solution (250–300 μL/well).
 f. Remove the liquid from each well.
 g. **Repeat steps e-f five additional times.**
 h. After the seventh wash cycle, invert the plate and tap firmly on absorbent paper repeatedly to remove any remaining fluid.

10. Using a multichannel or repeating pipette, dispense 50 μL of Conjugate into each washed test well, including the blank well(s).

11. Incubate the microassay strips at room temperature (15–30°C) for 60 ± 1 minutes.

12. Wash the microassay wells after the 60-minute incubation, as described in step 9.

13. Immediately following the wash procedure, dispense 100 μL of the TMB Substrate Solution into each well, including the blank(s).

14. Incubate the microassay strips at room temperature (15–30°C) for 15 ± 1 minutes.
15. Add 100 µL of Stop Solution to each well to stop the enzymatic reaction. The Stop Solution should be added to the wells in the same order and at the same rate as was the Substrate Solution. Gently tap the plate to disperse the color development evenly.

16. Determine the absorbance reading at 450 nm (A_{450} value) for each test well within one hour after the addition of the Stop Solution, making the necessary blank correction. No reference filter is required.

17. Dispose of the remaining diluted specimens, activator, controls, and the used microassay strips (see WARNINGS AND PRECAUTIONS, step 23). Keep the strip holder and strip retainer for future use.

QUALITY CONTROL

Good laboratory practice recommends the use of controls to ensure that the assay is performing properly. Each CH50 Eq EIA kit contains Normal and Low Controls that can be used for this purpose. These Controls should be tested at least once for each batch of specimens, i.e., for each separate activation run. The Controls, when used as instructed, should give CH50 unit equivalent values within the ranges specified on their vial labels. Since these Controls are to be activated, diluted, and tested exactly like a typical specimen, they serve as both Controls and Reference Standards for each activation and CH50 Eq EIA run. External controls, prepared by your laboratory, may also be used to help ensure that the assay is performing properly.

In addition, the product insert requires that the standard curve generated with the kit A-E Standards meet stringent validation requirements (see INTERPRETATION OF RESULTS). Standards should be tested in duplicate for each assay run. If the assay does not meet these requirements, repeat the assay or contact Quidel Technical Assistance.

INTERPRETATION OF RESULTS

Use of the Standard Curve: The standard curve for the CH50 Eq EIA is generated using the blank-subtracted A_{450} values for each standard (on the y axis) and the assigned concentration for each standard (along the x axis). The standard curve must meet the validation requirements. Most computers and calculators are capable of performing this calculation. An example of a typical standard curve is shown in Figure 1.

Calculation of Actual CH50 U Eq Level in Patient Specimens: Sample values are calculated from the standard curve using linear regression analysis. For test samples that were activated and diluted 1:200 prior to testing, the CH50 U Eq/mL can be read directly from the standard curve. The values (U Eq/mL) for the Normal and Low Controls can also be read directly from the standard curve, since you have also diluted them 1:200.

In order to obtain accurate CH50 determinations for test specimens that yield A_{450} values greater than that of the CH50 Eq EIA Standard E (or that yield A_{450} values less than that obtained with Standard A), the test specimens may be re-assayed at a different dilution so that their new A_{450} values will be within these limits. In all repeat assays the Standards and Controls must also be tested.
If a sample is run in the assay at a dilution other than 200-fold, the CH50 level of the sample is determined by correcting for the difference between the dilution examined and the usual 200-fold dilution. For example, if a sample is diluted 100-fold rather than the usual 200-fold, and the linear regression curve yields a concentration of 100 CH50 U Eq/ml, then the actual CH50 U Eq/mL in the sample is 50 (i.e., 100 CH50 U Eq/mL divided by 2).

Example of Standard Curve

Figure 1

Example of 5-point CH50 Eq EIA Standard Curve

(Do not use for your calculations)

\[y = 0.0063x - 0.0201 \]
\[r = 0.9998 \]

Validation

Calculate the CH50 U Eq/mL for the Normal and Low Controls. Also determine the correlation coefficient (\(r \)) and the y-intercept (\(b \)) of the derived best fit linear curve for the values obtained with the A-E Standards. To validate the assay, the \(r \), \(b \), and Control values must be within the ranges shown below:

- Correlation coefficient (\(r \)): > 0.96
- y-intercept (\(b \)): (-) 0.090 to (+) 0.068
- Slope (m): 0.0033 – 0.0089

Normal & Low Control values: Within ranges indicated on their respective vial labels.

LIMITATIONS OF THE PROCEDURE

The MicroVue CH50 Eq EIA has been used to test specimens collected as serum. The clinical performance of plasma samples prepared with different anticoagulants has not been determined.

EXPECTED VALUES

Two hundred thirty-four (234) normal and abnormal serum samples were tested at Quidel in the CH50 Eq EIA. The average value obtained with the normal sample population was 133 ± 54 CH50 U Eq/mL. As a guideline, the cutoff obtained using Receiver Operator Characteristics (ROC) analysis with these normal and abnormal serum specimens was 70 CH50 U Eq/mL. Each laboratory should define its own normal ranges.
Using the MicroVue CH50 Eq EIA, two hundred twenty-one (221) patient samples were tested at a major clinical reference laboratory in the United States. Employing the cutoff of 70 CH50 Eq U/mL and ROC analysis, the overall accuracy of the CH50 Eq EIA, when compared to the combined results from three hemolytic and one EIA-based assay, was greater than 97%.

Using traditional measurements of clinical performance, the MicroVue CH50 Eq EIA also gave a clinical accuracy of greater than 97% with a sensitivity of 93.2% and a specificity of 99.4%. Using the Bablok Passing Algorithm method, the CH50 U Eq values obtained with the MicroVue CH50 Eq EIA correlated closely with the CH50 values obtained by the traditional hemolytic assay reported by the clinic laboratory, giving a level of significance of p < 0.001.

PERFORMANCE CHARACTERISTICS

Precision:
Within-run and between-run precision was determined by assaying 16 replicates of 4 serum samples in 10 different runs.

<table>
<thead>
<tr>
<th>Sample</th>
<th>CH50 U Eq/mL</th>
<th>Within-run(^1) C.V. (%)</th>
<th>Between-run(^2) C.V. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum</td>
<td>150.4</td>
<td>3.2</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>59.96</td>
<td>4.5</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>98.84</td>
<td>3.6</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td>48.86</td>
<td>3.9</td>
<td>6.2</td>
</tr>
</tbody>
</table>

\(^1\)n = 16 replicates \(^2\)n = 10 runs

ASSISTANCE

To place an order or for technical assistance, please contact a Quidel Representative at 800-524-6318 or 408-616-4301, Monday through Friday, between 8:00 a.m. and 5:00 p.m., Pacific Time. Orders may also be placed by fax at 408-616-4310.

For services outside the U.S., please contact your local distributor. Additional information about Quidel and Quidel’s products and distributors can be found on our website at www.quidel.com.

REFERENCES

A018 – MicroVue™ CH50 Eq Enzyme Immunoassay Kit

MDSS GmbH
Schiffgraben 41
30175 Hannover, Germany